Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7746, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008788

RESUMO

Neural computations arise from highly precise connections between specific types of neurons. Retinal ganglion cells (RGCs) with similar stratification patterns are positioned to receive similar inputs but often display different response properties. In this study, we used intersectional mouse genetics to achieve single-cell type labeling and identified an object motion sensitive (OMS) AC type, COMS-AC(counter-OMS AC). Optogenetic stimulation revealed that COMS-AC makes glycinergic synapses with the OMS-insensitive HD2p-RGC, while chemogenetic inactivation showed that COMS-AC provides inhibitory control to HD2p-RGC during local motion. This local inhibition, combined with the inhibitory drive from TH2-AC during global motion, explains the OMS-insensitive feature of HD2p-RGC. In contrast, COMS-AC fails to make synapses with W3(UHD)-RGC, allowing it to exhibit OMS under the control of VGlut3-AC and TH2-AC. These findings reveal modular interneuron circuits that endow structurally similar RGC types with different responses and present a mechanism for redundancy-reduction in the retina to expand coding capacity.


Assuntos
Retina , Células Ganglionares da Retina , Camundongos , Animais , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Transmissão Sináptica , Interneurônios , Sinapses/fisiologia
2.
Nat Commun ; 14(1): 5937, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741839

RESUMO

A fundamental organizing plan of the retina is that visual information is divided into ON and OFF streams that are processed in separate layers. This functional dichotomy originates in the ON and OFF bipolar cells, which then make excitatory glutamatergic synapses onto amacrine and ganglion cells in the inner plexiform layer. We have identified an amacrine cell (AC), the sign-inverting (SI) AC, that challenges this fundamental plan. The glycinergic, ON-stratifying SI-AC has OFF light responses. In opposition to the classical wiring diagrams, it receives inhibitory inputs from glutamatergic ON bipolar cells at mGluR8 synapses, and excitatory inputs from an OFF wide-field AC at electrical synapses. This "inhibitory ON center - excitatory OFF surround" receptive-field of the SI-AC allows it to use monostratified dendrites to conduct crossover inhibition and push-pull activation to enhance light detection by ACs and RGCs in the dark and feature discrimination in the light.


Assuntos
Células Amácrinas , Retina , Interneurônios , Dissidências e Disputas , Sinapses Elétricas
4.
Cell Rep ; 40(1): 111036, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35793636

RESUMO

Recent developments in intersectional strategies have greatly advanced our ability to precisely target brain cell types based on unique co-expression patterns. To accelerate the application of intersectional genetics, we perform a brain-wide characterization of 13 Flp and tTA mouse driver lines and selected seven for further analysis based on expression of vesicular neurotransmitter transporters. Using selective Cre driver lines, we created more than 10 Cre/tTA combinational lines for cell type targeting and circuit analysis. We then used VGLUT-Cre/VGAT-Flp combinational lines to identify and map 30 brain regions containing neurons that co-express vesicular glutamate and gamma-aminobutyric acid (GABA) transporters, followed by tracing their projections with intersectional viral vectors. Focusing on the lateral habenula (LHb) as a target, we identified glutamatergic, GABAergic, or co-glutamatergic/GABAergic innervations from ∼40 brain regions. These data provide an important resource for the future application of intersectional strategies and expand our understanding of the neuronal subtypes in the brain.


Assuntos
Habenula , Neurônios , Animais , Habenula/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
5.
Cell Calcium ; 104: 102588, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35398674

RESUMO

Müller glia, a pillar of metabolic, volume regulatory and immune/inflammatory signaling in the mammalian retina, are among the earliest responders to mechanical stressors in the eye. Ocular trauma, edema, detachment and glaucoma evoke early inflammatory activation of Müller cells yet the identity of their mechanotransducers and signaling mechanisms downstream remains unknown. Here, we investigate expression of genes that encode putative stretch-activated calcium channels (SACs) in mouse Müller cells and study their responses to dynamical tensile loading in cells loaded with a calcium indicator dye. Transcript levels in purified glia were Trpc1>Piezo1>Trpv2>Trpv4>>Trpv1>Trpa1. Cyclic radial deformation of matrix-coated substrates produced dose-dependent increases in [Ca2+]i that were suppressed by the TRPV4 channel antagonist HC-067047 and by ablation of the Trpv4 gene. Stretch-evoked calcium responses were also reduced by knockdown and pharmacological inhibition of TRPC1 channels whereas the TRPV2 inhibitor tranilast had no effect. These data demonstrate that Müller cells are intrinsically mechanosensitive, with the response to tensile loading mediated through synergistic activation of TRPV4 and TRPC1 channels. Coupling between mechanical stress and Müller Ca2+ homeostasis has treatment implications, since many neuronal injury paradigms in the retina involve calcium dysregulation associated with inflammatory and immune signaling.


Assuntos
Células Ependimogliais , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPV , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Células Ependimogliais/metabolismo , Canais Iônicos/metabolismo , Mamíferos/metabolismo , Camundongos , Canais de Cátion TRPV/metabolismo
6.
Glia ; 69(6): 1563-1582, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33624376

RESUMO

The physiological and neurological correlates of plummeting brain osmolality during edema, traumatic CNS injury, and severe ischemia are compounded by neuroinflammation. Using multiple approaches, we investigated how retinal microglia respond to challenges mediated by increases in strain, osmotic gradients, and agonists of the stretch-activated cation channel TRPV4. Dissociated and intact microglia were TRPV4-immunoreactive and responded to the selective agonist GSK1016790A and substrate stretch with altered motility and elevations in intracellular calcium ([Ca2+ ]i ). Agonist- and hypotonicity-induced swelling was associated with a nonselective outwardly rectifying cation current, increased [Ca2+ ]i , and retraction of higher-order processes. The antagonist HC067047 reduced the extent of hypotonicity-induced microglial swelling and inhibited the suppressive effects of GSK1016790A and hypotonicity on microglial branching. Microglial TRPV4 signaling required intermediary activation of phospholipase A2 (PLA2), cytochrome P450, and epoxyeicosatrienoic acid production (EETs). The expression pattern of vanilloid thermoTrp genes in retinal microglia was markedly different from retinal neurons, astrocytes, and cortical microglia. These results suggest that TRPV4 represents a primary retinal microglial sensor of osmochallenges under physiological and pathological conditions. Its activation, associated with PLA2, modulates calcium signaling and cell architecture. TRPV4 inhibition might be a useful strategy to suppress microglial overactivation in the swollen and edematous CNS.


Assuntos
Microglia , Canais de Cátion TRPV/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Microglia/metabolismo , Neuroglia/metabolismo , Doenças Neuroinflamatórias , Canais de Cátion TRPV/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-32850715

RESUMO

Ionic electroactive polymers (ionic EAPs) can greatly aid in biomedical applications where micro-sized actuators are required for delicate procedures. Since these types of actuators generally require platinum or gold metallic electrodes, they tend to be expensive and susceptible to delamination. Previous research has solved this problem by replacing the metallic electrodes with conductive polymers (CP) and forming an interpenetrating polymer network (IPN) between the conductive polymer (CP) and the solid polymer electrolyte (SPE). Since these actuators contain toxic ionic liquids, they are unsuitable for biological applications. In this study, we present a novel and facile method of fabricating a biocompatible and ionic liquid-free actuator that uses semi-IPN to hold the CP and Nafion-based SPE layers together. Surface activated fabrication treatment (SAFT) is applied to the precursor-Nafion membrane in order to convert the sulfonyl fluoride groups on the surface to sulfonate. Through template-assisted self-assembly, the CP electrodes from either polyaniline (PANI) or poly(3,4-ethylenedioxythiophene) (PEDOT) interlock with the surface treated precursor-Nafion membrane so that no delamination can occur. The electrodes growth pattern, interfacial layer's thickness, and shape can be controlled by adjusting the SAFT concentration and duration.

8.
Microbiol Resour Announc ; 9(13)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32217670

RESUMO

We report a complete genome sequence of Acidithiobacillus ferridurans JAGS, determined using PacBio single-molecule real-time (SMRT) sequencing. The circular genome of JAGS (2,933,811 bp; GC content, 58.57%) contains 3,001 protein-coding sequences, 46 tRNAs, and 6 rRNAs. Predicted genes indicate the potential to fix CO2 and N2 and to utilize Fe2+, S0, and H2 as energy sources.

9.
Front Cell Neurosci ; 12: 353, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386208

RESUMO

Retinal ganglion cells (RGCs) are projection neurons that transmit the visual signal from the retina to the brain. Their excitability and survival can be strongly influenced by mechanical stressors, temperature, lipid metabolites, and inflammatory mediators but the transduction mechanisms for these non-synaptic sensory inputs are not well characterized. Here, we investigate the distribution, functional expression, and localization of two polymodal transducers of mechanical, lipid, and inflammatory signals, TRPV1 and TRPV4 cation channels, in mouse RGCs. The most abundant vanilloid mRNA species was Trpv4, followed by Trpv2 and residual expression of Trpv3 and Trpv1. Immunohistochemical and functional analyses showed that TRPV1 and TRPV4 channels are expressed as separate molecular entities, with TRPV1-only (∼10%), TRPV4-only (∼40%), and TRPV1 + TRPV4 (∼10%) expressing RGC subpopulations. The TRPV1 + TRPV4 cohort included SMI-32-immunopositive alpha RGCs, suggesting potential roles for polymodal signal transduction in modulation of fast visual signaling. Arguing against obligatory heteromerization, optical imaging showed that activation and desensitization of TRPV1 and TRPV4 responses evoked by capsaicin and GSK1016790A are independent of each other. Overall, these data predict that RGC subpopulations will be differentially sensitive to mechanical and inflammatory stressors.

10.
Front Neural Circuits ; 12: 66, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186122

RESUMO

The mammalian retina harbors over 100 different cell types. To understand how retinal circuits work, it is essential to systematically access each type. A widely used approach for achieving targeted transgene expression exploits promoter-driven Cre lines. However, Cre expression in a given transgenic line in the retina and elsewhere in the brain is rarely confined to a single cell type, contributing ambiguity to the interpretation of results from broadly applied manipulations. To obtain unambiguous information about retinal processing, it is desirable to have strategies for further restricting transgene expression to a few or even to a single cell type. We employed an intersectional strategy based on a Cre/Flp double recombinase system to target amacrine and ganglion cell types in the inner retina. We analyzed expression patterns in seven Flp drivers and then created combinational mouse lines by selective cross breeding with Cre drivers. Breeding with Flp drivers can routinely remove labeling from more than 90% of the cells in Cre drivers, leading to only a handful cell types, typically 2-3, remaining in the intersection. Cre/Flp combinatorial mouse lines enabled us to identify and anatomically characterize retinal cell types with greater ease and demonstrated the feasibility of intersectional strategies in retinal research. In addition to the retina, we examined Flp expression in the lateral geniculate nucleus and superior colliculus. Our results establish a foundation for future application of intersectional strategies in the retina and retino-recipient regions.


Assuntos
Células Amácrinas/fisiologia , DNA Nucleotidiltransferases , Corpos Geniculados/fisiologia , Integrases , Células Ganglionares da Retina/fisiologia , Colículos Superiores/fisiologia , Células Amácrinas/metabolismo , Animais , DNA Nucleotidiltransferases/metabolismo , Feminino , Corpos Geniculados/metabolismo , Integrases/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Células Ganglionares da Retina/metabolismo , Colículos Superiores/metabolismo
11.
PLoS One ; 12(11): e0188861, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29190805

RESUMO

Planar lipid bilayer device, alternatively known as BLM, is a powerful tool to study functional properties of conducting membrane proteins such as ion channels and porins. In this work, we used BLM to study the prokaryotic voltage-gated sodium channel (Nav) NaChBac in a well-defined membrane environment. Navs are an essential component for the generation and propagation of electric signals in excitable cells. The successes in the biochemical, biophysical and crystallographic studies on prokaryotic Navs in recent years has greatly promoted the understanding of the molecular mechanism that underlies these proteins and their eukaryotic counterparts. In this work, we investigated the single-molecule conductance and ionic selectivity behavior of NaChBac. Purified NaChBac protein was first reconstituted into lipid vesicles, which is subsequently incorporated into planar lipid bilayer by fusion. At single-molecule level, we were able to observe three distinct long-lived conductance sub-states of NaChBac. Change in the membrane potential switches on the channel mainly by increasing its opening probability. In addition, we found that individual NaChBac has similar permeability for Na+, K+, and Ca2+. The single-molecule behavior of the full-length protein is essentially highly stochastic. Our results show that planar lipid bilayer device can be used to study purified ion channels at single-molecule level in an artificial environment, and such studies can reveal new protein properties that are otherwise not observable in in vivo ensemble studies.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana/metabolismo
12.
J Physiol ; 595(20): 6499-6516, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28766743

RESUMO

KEY POINTS: Retinal cells use vanilloid transient receptor potential (TRP) channels to integrate light-evoked signals with ambient mechanical, chemical and temperature information. Localization and function of the polymodal non-selective cation channel TRPV1 (transient receptor potential vanilloid isoform 1) remains elusive. TRPV1 is expressed in a subset of mouse retinal ganglion cells (RGCs) with peak expression in the mid-peripheral retina. Endocannabinoids directly activate TRPV1 and inhibit it through cannabinoid type 1 receptors (CB1Rs) and cAMP pathways. Activity-dependent endocannabinoid release may modulate signal gain in RGCs through simultaneous manipulation of calcium and cAMP signals mediated by TRPV1 and CB1R. ABSTRACT: How retinal ganglion cells (RGCs) process and integrate synaptic, mechanical, swelling stimuli with light inputs is an area of intense debate. The nociceptive cation channel TRPV1 (transient receptor potential vanilloid type 1) modulates RGC Ca2+ signals and excitability yet the proportion of RGCs that express it remains unclear. Furthermore, TRPV1's response to endocannabinoids (eCBs), the putative endogenous retinal activators, is unknown, as is the potential modulation by cannabinoid receptors (CBRs). The density of TRPV1-expressing RGCs in the Ai9:Trpv1 reporter mouse peaked in the mid-peripheral retina. TRPV1 agonists including capsaicin (CAP) and the eCBs anandamide and N-arachidonoyl-dopamine elevated [Ca2+ ]i in 30-40% of wild-type RGCs, with effects suppressed by TRPV1 antagonists capsazepine (CPZ) and BCTC ((4-(3-chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-piperazinecarboxamide), and lacking in Trpv1-/- cells. The cannabinoid receptor type 1 (CB1R) colocalized with TRPV1:tdTomato expression. Its agonists 2-arachidonoylglycerol (2-AG) and WIN55,122 inhibited CAP-induced [Ca2+ ]i signals in adult, but not early postnatal, RGCs. The suppressive effect of 2-AG on TRPV1 activation was emulated by positive modulators of the protein kinase A (PKA) pathway, inhibited by the CB1R antagonist rimonabant and Gi uncoupler pertussis toxin, and absent in Cnr1-/- RGCs. We conclude that TRPV1 is a modulator of Ca2+ homeostasis in a subset of RGCs that show non-uniform distribution across the mouse retina. Non-retrograde eCB-mediated modulation of RGC signalling involves a dynamic push-pull between direct TRPV1 activation and PKA-dependent regulation of channel inactivation, with potential functions in setting the bandwidth of postsynaptic responses, sensitivity to mechanical/excitotoxic stress and neuroprotection.


Assuntos
Receptor CB1 de Canabinoide/fisiologia , Células Ganglionares da Retina/fisiologia , Canais de Cátion TRPV/fisiologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais
13.
Sci Rep ; 6: 30583, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27510430

RESUMO

An intractable challenge in glaucoma treatment has been to identify druggable targets within the conventional aqueous humor outflow pathway, which is thought to be regulated/dysregulated by elusive mechanosensitive protein(s). Here, biochemical and functional analyses localized the putative mechanosensitive cation channel TRPV4 to the plasma membrane of primary and immortalized human TM (hTM) cells, and to human and mouse TM tissue. Selective TRPV4 agonists and substrate stretch evoked TRPV4-dependent cation/Ca(2+) influx, thickening of F-actin stress fibers and reinforcement of focal adhesion contacts. TRPV4 inhibition enhanced the outflow facility and lowered perfusate pressure in biomimetic TM scaffolds populated with primary hTM cells. Systemic delivery, intraocular injection or topical application of putative TRPV4 antagonist prodrug analogs lowered IOP in glaucomatous mouse eyes and protected retinal neurons from IOP-induced death. Together, these findings indicate that TRPV4 channels function as a critical component of mechanosensitive, Ca(2+)-signaling machinery within the TM, and that TRPV4-dependent cytoskeletal remodeling regulates TM stiffness and outflow. Thus, TRPV4 is a potential IOP sensor within the conventional outflow pathway and a novel target for treating ocular hypertension.


Assuntos
Cálcio/metabolismo , Citoesqueleto/metabolismo , Canais de Cátion TRPV/metabolismo , Malha Trabecular/fisiologia , Animais , Membrana Celular/metabolismo , Homeostase , Humanos , Pressão Intraocular , Camundongos , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Hipertensão Ocular/tratamento farmacológico , Hipertensão Ocular/genética , Hipertensão Ocular/metabolismo , Pirróis/administração & dosagem , Pirróis/farmacologia , Canais de Cátion TRPV/genética , Malha Trabecular/citologia
14.
Proc Natl Acad Sci U S A ; 113(14): 3885-90, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27006502

RESUMO

Fluid secretion by the ciliary body plays a critical and irreplaceable function in vertebrate vision by providing nutritive support to the cornea and lens, and by maintaining intraocular pressure. Here, we identify TRPV4 (transient receptor potential vanilloid isoform 4) channels as key osmosensors in nonpigmented epithelial (NPE) cells of the mouse ciliary body. Hypotonic swelling and the selective agonist GSK1016790A (EC50 ∼33 nM) induced sustained transmembrane cation currents and cytosolic [Formula: see text] elevations in dissociated and intact NPE cells. Swelling had no effect on [Formula: see text] levels in pigment epithelial (PE) cells, whereas depolarization evoked [Formula: see text] elevations in both NPE and PE cells. Swelling-evoked [Formula: see text] signals were inhibited by the TRPV4 antagonist HC067047 (IC50 ∼0.9 µM) and were absent in Trpv4(-/-) NPE. In NPE, but not PE, swelling-induced [Formula: see text] signals required phospholipase A2 activation. TRPV4 localization to NPE was confirmed with immunolocalization and excitation mapping approaches, whereas in vivo MRI analysis confirmed TRPV4-mediated signals in the intact mouse ciliary body. Trpv2 and Trpv4 were the most abundant vanilloid transcripts in CB. Overall, our results support a model whereby TRPV4 differentially regulates cell volume, lipid, and calcium signals in NPE and PE cell types and therefore represents a potential target for antiglaucoma medications.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Corpo Ciliar/fisiologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Glaucoma/patologia , Canais de Cátion TRPV/metabolismo , Visão Ocular/fisiologia , Animais , Cálcio/metabolismo , Tamanho Celular , Células Cultivadas , Ativação Enzimática , Leucina/análogos & derivados , Leucina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pressão Osmótica/fisiologia , Fosfolipases A2/metabolismo , Sulfonamidas/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética
15.
J Neurosci ; 35(39): 13525-37, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26424896

RESUMO

Brain edema formation occurs after dysfunctional control of extracellular volume partly through impaired astrocytic ion and water transport. Here, we show that such processes might involve synergistic cooperation between the glial water channel aquaporin 4 (AQP4) and the transient receptor potential isoform 4 (TRPV4), a polymodal swelling-sensitive cation channel. In mouse retinas, TRPV4 colocalized with AQP4 in the end feet and radial processes of Müller astroglia. Genetic ablation of TRPV4 did not affect the distribution of AQP4 and vice versa. However, retinas from Trpv4(-/-) and Aqp4(-/-) mice exhibited suppressed transcription of genes encoding Trpv4, Aqp4, and the Kir4.1 subunit of inwardly rectifying potassium channels. Swelling and [Ca(2+)]i elevations evoked in Müller cells by hypotonic stimulation were antagonized by the selective TRPV4 antagonist HC-067047 (2-methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide) or Trpv4 ablation. Elimination of Aqp4 suppressed swelling-induced [Ca(2+)]i elevations but only modestly attenuated the amplitude of Ca(2+) signals evoked by the TRPV4 agonist GSK1016790A [(N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide]. Glial cells lacking TRPV4 but not AQP4 showed deficits in hypotonic swelling and regulatory volume decrease. Functional synergy between TRPV4 and AQP4 during cell swelling was confirmed in the heterologously expressing Xenopus oocyte model. Importantly, when the swelling rate was osmotically matched for AQP4-positive and AQP4-negative oocytes, TRPV4 activation became independent of AQP4. We conclude that AQP4-mediated water fluxes promote the activation of the swelling sensor, whereas Ca(2+) entry through TRPV4 channels reciprocally modulates volume regulation, swelling, and Aqp4 gene expression. Therefore, TRPV4-AQP4 interactions constitute a molecular system that fine-tunes astroglial volume regulation by integrating osmosensing, calcium signaling, and water transport and, when overactivated, triggers pathological swelling. Significance statement: We characterize the physiological features of interactions between the astroglial swelling sensor transient receptor potential isoform 4 (TRPV4) and the aquaporin 4 (AQP4) water channel in retinal Müller cells. Our data reveal an elegant and complex set of mechanisms involving reciprocal interactions at the level of glial gene expression, calcium homeostasis, swelling, and volume regulation. Specifically, water influx through AQP4 drives calcium influx via TRPV4 in the glial end foot, which regulates expression of Aqp4 and Kir4.1 genes and facilitates the time course and amplitude of hypotonicity-induced swelling and regulatory volume decrease. We confirm the crucial facets of the signaling mechanism in heterologously expressing oocytes. These results identify the molecular mechanism that contributes to dynamic regulation of glial volume but also provide new insights into the pathophysiology of glial reactivity and edema formation.


Assuntos
Aquaporina 4/fisiologia , Cálcio/metabolismo , Homeostase/fisiologia , Neuroglia/fisiologia , Retina/fisiologia , Canais de Cátion TRPV/fisiologia , Animais , Aquaporina 4/antagonistas & inibidores , Aquaporina 4/genética , Sinalização do Cálcio/efeitos dos fármacos , Tamanho Celular , Expressão Gênica/genética , Expressão Gênica/fisiologia , Leucina/análogos & derivados , Leucina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/farmacologia , Neuroglia/ultraestrutura , Oócitos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Pirróis/farmacologia , Retina/citologia , Sulfonamidas/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Água/metabolismo , Xenopus
16.
J Neurosci ; 34(47): 15689-700, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25411497

RESUMO

Activity-dependent shifts in ionic concentrations and water that accompany neuronal and glial activity can generate osmotic forces with biological consequences for brain physiology. Active regulation of osmotic gradients and cellular volume requires volume-sensitive ion channels. In the vertebrate retina, critical support to volume regulation is provided by Müller astroglia, but the identity of their osmosensor is unknown. Here, we identify TRPV4 channels as transducers of mouse Müller cell volume increases into physiological responses. Hypotonic stimuli induced sustained [Ca(2+)]i elevations that were inhibited by TRPV4 antagonists and absent in TRPV4(-/-) Müller cells. Glial TRPV4 signals were phospholipase A2- and cytochrome P450-dependent, characterized by slow-onset and Ca(2+) waves, and, in excess, were sufficient to induce reactive gliosis. In contrast, neurons responded to TRPV4 agonists and swelling with fast, inactivating Ca(2+) signals that were independent of phospholipase A2. Our results support a model whereby swelling and proinflammatory signals associated with arachidonic acid metabolites differentially gate TRPV4 in retinal neurons and glia, with potentially significant consequences for normal and pathological retinal function.


Assuntos
Eicosanoides/metabolismo , Neuroglia/fisiologia , Neurônios/fisiologia , Retina/fisiologia , Canais de Cátion TRPV/fisiologia , Animais , Gliose/patologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Concentração Osmolar , Técnicas de Patch-Clamp , Fosfolipases A2/fisiologia , Retina/citologia , Células Ganglionares da Retina/fisiologia , Canais de Cátion TRPV/genética
17.
Cells ; 3(3): 914-38, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25222270

RESUMO

Transient Receptor Potential Vanilloid 1 (TRPV1) subunits form a polymodal cation channel responsive to capsaicin, heat, acidity and endogenous metabolites of polyunsaturated fatty acids. While originally reported to serve as a pain and heat detector in the peripheral nervous system, TRPV1 has been implicated in the modulation of blood flow and osmoregulation but also neurotransmission, postsynaptic neuronal excitability and synaptic plasticity within the central nervous system. In addition to its central role in nociception, evidence is accumulating that TRPV1 contributes to stimulus transduction and/or processing in other sensory modalities, including thermosensation, mechanotransduction and vision. For example, TRPV1, in conjunction with intrinsic cannabinoid signaling, might contribute to retinal ganglion cell (RGC) axonal transport and excitability, cytokine release from microglial cells and regulation of retinal vasculature. While excessive TRPV1 activity was proposed to induce RGC excitotoxicity, physiological TRPV1 activity might serve a neuroprotective function within the complex context of retinal endocannabinoid signaling. In this review we evaluate the current evidence for localization and function of TRPV1 channels within the mammalian retina and explore the potential interaction of this intriguing nociceptor with endogenous agonists and modulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...